215
Towards Engineering Smart Transcription Factors for Enhanced Abiotic Stress
Danquah, A., De Zelicourt, A., Colcombet, J., & Hirt, H., (2014). The role of ABA and MAPK
signaling pathways in plant abiotic stress responses. Biotechnol. Adv., 32, 40–52.
Datta, K., Baisakh, N., Ganguly, M., Krishnan, S., Yamaguchi-Shinozaki, K., & Datta, S. K.,
(2012). Overexpression of Arabidopsis and rice stress genes’ inducible transcription factor
confers drought and salinity tolerance to rice. Plant Biotechnol J., 10, 579–586.
De Clercq, I., Vermeirssen, V., Van, A. O., Vandepoele, K., Murcha, M. W., Law, S. R., Inzé,
A., et al., (2013). The membrane-bound NAC transcription factor ANAC013 functions in
mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis. Plant
Cell, 25, 3472–3490.
Deikman, J., Petracek, M., & Heard, J. E., (2011). Drought tolerance through biotechnology:
Improving translation from the laboratory to farmer’s fields. Curr. Opin. Biotechnol., 23,
243–250.
Denby, K., & Gehring, C., (2005). Engineering drought and salinity tolerance in plants:
Lessons from genome-wide expression profiling in Arabidopsis. Trends Biotechnol., 23,
9–14.
Diao, W. P., Snyder, J. C., Wang, S. B., Liu, J. B., Pan, B. G., Guo, G. J., & Wei, G., (2016).
Genome-wide identification and expression analysis of WRKY gene family in Capsicum
annuum L. Front. Plant Sci., 7(10), 3389.
DiCarlo, J. E., Norville, J. E., Mali, P., Rios, X., Aach, J., & Church, G. M., (2013). Genome
engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res.,
41, 4336–4343.
Ding, Z., Li, S., An, X., Liu, X., Qin, H., & Wang, D., (2009). Transgenic expression of
MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in
Arabidopsis thaliana. J. Genet. Genomics, 36, 17–29.
Dong, J., Cao, L., Zhang, X., Zhang, W., Yang, T., Zhang, J., & Che, D., (2021). An R2R3
MYB transcription factor RmMYB108 responds to chilling stress of Rosa multiflora and
conferred cold tolerance of Arabidopsis. Front Plant Sci., 12, 696919.
Dong, Q., Zheng, W., Duan, D., Huang, D., Wang, Q., Liu, C., Li, C., et al., (2020).
MdWRKY30, a group IIa WRKY gene from apple, confers tolerance to salinity and osmotic
stresses in transgenic apple callus and Arabidopsis seedlings. Plant Sci., 299, 110611.
Dong, Y., Wang, C., Han, X., Tang, S., Liu, S., Xia, X., & Yin, W., (2014). A novel bHLH
transcription factor PebHLH35 from Populus euphratica confers drought tolerance through
regulating stomatal development, photosynthesis and growth in Arabidopsis. Biochem.
Biophys. Res. Commun., 450, 453–458.
Du, C., Zhao, P., Zhang, H., Li, N., Zheng, L., & Wang, Y., (2017). The Reaumuria trigyna
transcription factor RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis. J.
Plant Physiol. 215, 48–58.
Du, X., He, F., Zhu, B., et al., (2020). NAC transcription factors from Aegilops markgrafi
reduce cadmium concentration in transgenic wheat. Plant Soil, 449, 39–50.
Duan, M., Zhang, R., Zhu, F., Zhang, Z., Gou, L., Wen, J., Dong, J., & Wang, T., (2017).
A lipid-anchored NAC transcription factor is translocated into the nucleus and activates
glyoxalase I expression during drought stress. Plant Cell, 29, 1748–1772.
Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., & Lepiniec, L., (2010).
MYB transcription factors in Arabidopsis. Trends Plant Sci., 15, 573–581.
Ebrahimian-Motlagh, S., Ribone, P. A., Thirumalaikumar, V. P., Allu, A. D., Chan, R. L.,
Mueller-Roeber, B., & Balazadeh, S., (2017). Jungbrunnen1 confers drought tolerance
downstream of the HD-Zip I transcription factor AtHB13. Front. Plant Sci., 8, 2118.